Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hoong-Kun Fun,^a* Jeannie Bee-Jan Teh,^a Da-Qing Chen^b and Jian-Hua Xu^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: hkfun@usm.my

Key indicators

Single-crystal X-ray study T = 100 KMean σ (C–C) = 0.001 Å R factor = 0.023 wR factor = 0.064 Data-to-parameter ratio = 24.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

9,10,11,12-Tetrachloro-12b-hydroxy-2,12c-dimethyl-3a,5,6,12c-tetrahydrothiazalo[4,5-c][1,4]oxazepino[5,4-a]isoindol-8-one monohydrate

The crystal structure of the title compound, $C_{15}H_{14}Cl_4N_2O_4S$, is stabilized by $O-H\cdots O$, $O-H\cdots N$, $C-H\cdots Cl$ and $C-H\cdots O$ interactions, together with short $Cl\cdots O$ and $Cl\cdots S$ contacts.

Received 26 March 2007 Accepted 4 April 2007

Comment

The construction of medium and large heterocyclic ring systems is an important task in organic synthesis (Evans & Holmes, 1991; Griesbeck *et al.*, 1996; Illuminati & Mandolini, 1981). In a continuation of our recent work on photo-induced reactions of phthalimide with alkenes for medium and large ring construction (Xue *et al.*, 2000), we prepared the title compound, (I), by the reaction of photo-excited N-(2-hydroxyethyl)-4,5,6,7-tetrachlorophthalimide (TCP) with 2,4-dimethylthiazole, and its structure is reported here (Fig. 1).

Bond lengths and angles in (I) have normal values (Allen *et al.*, 1987). The thiazole ring, C1/C6–C7/N1/C12, adopts an envelope conformation, with C12 deviating from the mean plane of the other four atoms by 0.207 (1) Å. The puckering parameters are Q(2) = 0.127 (1) Å and $\varphi(2) = 135.8$ (4)° (Cremer & Pople, 1975).

Intramolecular C8–H8B···O2 and C9–H9A···S1, C13– H13C···S1, and C13–H13B···Cl1 hydrogen bonds generate S(5), S(6) and S(7) ring motifs, respectively (Table 1 and Fig. 1) (Bernstein *et al.*, 1995). The crystal structure is stabilized by intermolecular O–H···O, O–H···N, C–H···Cl and C– H···O interactions (Table 1 and Fig. 2). The relatively short distances Cl2···O2ⁱ [3.110 (1) Å] and Cl3···S1ⁱⁱ [3.381 (1) Å; symmetry codes: (i) x, 1 + y, z; (ii) x, y, 1 + z] indicate the presence of intermolecular interactions, which contribute to the further stabilization of the crystal structure.

Experimental

© 2007 International Union of Crystallography All rights reserved Compound (I) was synthesized by the photo-induced reaction between N-(2-hydroxyethyl)-4,5,6,7-tetrachlorophthalimide (0.025

Figure 1

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom numbering. Dashed lines indicate the intra-molecular hydrogen bonds.

Figure 2

The crystal packing of (I), viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted for clarity.

M) and an excess amount of 2,4-dimethylthiazole in a benzene (120 ml) solution. The title compound was isolated using silica gel column chromatography with petroleum ether (b.p. 333–363 K)–ethyl acetate as eluant for gradient elution. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the solvents from a petroleum ether–chloroform solution (2:1 ν/ν).

Crystal data

$C_{15}H_{14}Cl_4N_2O_4S$	$\gamma = 81.615 \ (1)^{\circ}$
$M_r = 460.14$	V = 861.40 (3) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 8.0229 (1) Å	Mo $K\alpha$ radiation
b = 9.9314 (2) Å	$\mu = 0.84 \text{ mm}^{-1}$
c = 11.8275 (2) Å	T = 100.0 (1) K
$\alpha = 68.407 \ (1)^{\circ}$	$0.46 \times 0.45 \times 0.43 \text{ mm}$
$\beta = 80.964 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.701, T_{\max} = 0.713$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	
$wR(F^2) = 0.064$	
S = 1.13	
5168 reflections	
249 parameters	

18330 measured reflections 6168 independent reflections 5896 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.018$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.48 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$	
$O1W-H1W1\cdots O2^{i}$	0.81 (2)	2.09 (2)	2.862 (1)	159 (2)	
$O1W - H2W1 \cdot \cdot \cdot N2^{ii}$	0.77(2)	2.32 (2)	3.071 (1)	166 (2)	
$O3-H1O3\cdots O1W^{iii}$	0.81(2)	1.95 (2)	2.738 (1)	163 (2)	
$C8-H8B\cdots Cl2^{iv}$	0.97	2.72	3.650 (1)	161	
$C8-H8B\cdots O2$	0.97	2.44	2.852 (1)	105	
$C9-H9A\cdots S1$	0.97	2.76	3.221 (1)	110	
C10-H10A···O3 ⁱⁱⁱ	0.98	2.57	3.537 (1)	169	
$C13-H13B\cdots Cl1$	0.96	2.76	3.197 (1)	108	
$C13-H13C\cdots S1$	0.96	2.88	3.288 (1)	107	
Symmetry codes: (i) $x, y+1, z-1$; (ii) $-x+1, -y+1, -z+1$; (iii)					

-x, -y + 1, -z + 1; (iv) x, y - 1, z.

The water and hydroxyl H atoms were located in a difference Fourier map and were refined with isotropic displacement parameters. Other H atoms were positioned geometrically and treated as riding, with C-H = 0.96 or 0.97 Å, and $U_{\rm iso}(\rm H)$ = 1.2 $U_{\rm eq}(\rm C)$ or 1.5_{eq}(methyl C).

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/ A118.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Evans, P. A. & Holmes, A. B. (1991). Tetrahedron, 47, 9131-9166.

Griesbeck, A. G., Henz, A. & Hirt, J. (1996). Synthesis, pp. 1261-1276.

Illuminati, G. & Mandolini, L. (1981). Acc. Chem. Res. 14, 95-102.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Xue, J., Zhu, L., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett. 41, 8553– 8557.